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What is the role of structural 
correlations in Directed Hypergraphs?
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Directed 
Hypergraphs

Multiset of directed 
hyperedges

Directed hyperedges 
have heads and tails

One-to-one mapping with 
directed bipartite graphs

Left nodes are h-vertices
Right nodes are h-edges



Higher-Order Relations

Higher-Order Relations
Higher-Order Relations

Why Directed 
Hypergraphs?
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Z
(Z,π)P

“some” properties of the 
observed structure

structures satisfying those 
properties but otw random null model 

What is a Null Model?

𝜋 is a probability 
distribution over Z  

(ensemble)
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Canonical Ensemble: constraints are satisfied on expectation

Micro-canonical Ensemble: constraints are enforced exactly
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Directed Hypergraph Configuration Model

head and tail size 
of hyperedges

in-degree and out-
degree of nodes
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T[i,j,k,l,d]: number of edges with direction d 
between a left vertex with in-deg i and out-deg j 
and a right vertex with in-deg k and out-deg l

Directed JOINT Hypergraph Model

JO
IN

T
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Markov Graph 
(MG) strongly 

connected and 
aperiodic 

⇩
Markov Chain 

(MC) is ergodic
⇩

MC eventually 
samples from Z 

with dist. 𝜋

p1,1

p2,2

p1,2

p2,1

p2,3

p3,2

p3,3

p3,4

p4,3

p4,4

p5,3

p3,5

p5,5

S1

S2

S3

S4

S5

pi,j transition 
probabilities

⇩
depend on neighbor 
proposal probabilities

Markov Chain Monte Carlo (MCMC)
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Changes in the Node Neighborhood

The PSO is a DES where
edges have the same direction
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b
RPSO
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NuDHy-Degs NuDHy-JOINT

Changes in the Node Neighborhood

The RPSO is a PSO where sources and/or 
destinations have the same in/out degrees
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Previous results on hypergraphs

Group Affinity for Higher-Order Relations

num of groups with t 
nodes from class X

extent to which entities in a certain class 
participate in groups with a certain 
number of entities from that class 

null probability of participating 
in groups with a certain number 

of entities of the same class
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Partisanship in US Congress Bills

12

1995: Democrats display a more 
unified front (they sponsor fewer 

bills, co-sponsor intensively)

When one party holds the majority 
of the seats the opposing party 
exhibits higher group affinity 

“Republicans have consistently 
valued doctrinal purity over 

pragmatic deal-making”

NetSci 2025, Maastricht, The Netherlands



13

1.2

1.4

1.6

1.8 c)

N
uD

H
y

House

1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003
Starting Year of the Congress

1.2

1.3

1.4

1.5

1.6
d)

B
as

el
in

e

Republicans Democrats

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

M
ea

n
A
±

ni
ty

R
at

io

a)

Senate

1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003
Starting Year of the Congress

1.1

1.2

1.3

1.4

1.5

M
ea

n
A
±

ni
ty

R
at

io

b)

NuDHy-Degs NuDHy-JOINT Veldt et al.

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

M
ea

n
A
±

ni
ty

R
at

io

a)

Senate

1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003
Starting Year of the Congress

1.1

1.2

1.3

1.4

1.5

M
ea

n
A
±

ni
ty

R
at

io

b)

NuDHy-Degs NuDHy-JOINT Veldt et al.

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

M
ea

n
A
±

ni
ty

R
at

io

a)

Senate

1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003
Starting Year of the Congress

1.1

1.2

1.3

1.4

1.5

M
ea

n
A
±

ni
ty

R
at

io

b)

NuDHy-Degs NuDHy-JOINT Veldt et al.

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

M
ea

n
A
±

ni
ty

R
at

io

a)

Senate

1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003
Starting Year of the Congress

1.1

1.2

1.3

1.4

1.5

M
ea

n
A
±

ni
ty

R
at

io

b)

NuDHy-Degs NuDHy-JOINT Veldt et al.

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

M
ea

n
A
±

ni
ty

R
at

io

a)

Senate

1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003
Starting Year of the Congress

1.1

1.2

1.3

1.4

1.5

M
ea

n
A
±

ni
ty

R
at

io

b)

NuDHy-Degs NuDHy-JOINT Veldt et al.

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

M
ea

n
A
±

ni
ty

R
at

io

a)

Senate

1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003
Starting Year of the Congress

1.1

1.2

1.3

1.4

1.5

M
ea

n
A
±

ni
ty

R
at

io

b)

NuDHy-Degs NuDHy-JOINT Veldt et al.

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

M
ea

n
A
±

ni
ty

R
at

io

a)

Senate

1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003
Starting Year of the Congress

1.1

1.2

1.3

1.4

1.5

M
ea

n
A
±

ni
ty

R
at

io

b)

NuDHy-Degs NuDHy-JOINT Veldt et al.

1.2

1.4

1.6

1.8 c)

N
uD

H
y

House

1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003
Starting Year of the Congress

1.2

1.3

1.4

1.5

1.6
d)

B
as

el
in

e

Republicans Democrats

Partisanship in US Congress Bills

Baseline fails to consider each party’s 
relative prevalence and each legislator’s 
individual co-sponsoring opportunities

2001: Democrats engage in a 
higher rate of co-sponsorship… 

but also propose more bills!

1995: Republicans engage in a 
higher rate of co-sponsorship… 

but also propose 2x bills!
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Influential groups for seeding and sustaining
nonlinear contagion in heterogeneous hypergraphs
Guillaume St-Onge 1,2✉, Iacopo Iacopini 3,4,5,6, Vito Latora 6,7,8, Alain Barrat 4,9, Giovanni Petri 10,11,
Antoine Allard 1,2,12 & Laurent Hébert-Dufresne 1,12,13✉

Contagion phenomena are often the results of multibody interactions—such as super-

spreading events or social reinforcement—describable as hypergraphs. We develop an

approximate master equation framework to study contagions on hypergraphs with a het-

erogeneous structure in terms of group size (hyperedge cardinality) and of node membership

(hyperdegree). By mapping multibody interactions to nonlinear infection rates, we demon-

strate the influence of large groups in two ways. First, we characterize the phase transition,

which can be continuous or discontinuous with a bistable regime. Our analytical expressions

for the critical and tricritical points highlight the influence of the first three moments of the

membership distribution. We also show that heterogeneous group sizes and nonlinear

contagion promote a mesoscopic localization regime where contagion is sustained by the

largest groups, thereby inhibiting bistability. Second, we formulate an optimal seeding pro-

blem for hypergraph contagion and compare two strategies: allocating seeds according to

node or group properties. We find that, when the contagion is sufficiently nonlinear, groups

are more effective seeds than individual hubs.
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hyperedge cardinality. Note that a d-simplex consist of d+ 1
nodes and is therefore mapped onto a group of size n= d+ 1.
Similarly, the membership m of a node, the node hyperdegree,
corresponds to the number of groups to which it belongs,
regardless of their size.

The hypergraph contagion model is defined as follows: for a
group of size n, where i ≤ n members are infected, each of the
n− i susceptible nodes gets infected at rate β(n, i). For susceptible
nodes that belong to multiple groups, their total transition rate to
the infected state is simply the sum of the infection rates
associated with each group to which they belong—in other words,
the infection processes are independent. All infected nodes
transition back to the susceptible state at the same constant
recovery rate μ.

Notice that the hypergraph contagion model allows represent-
ing any type of simplicial contagion. For instance, in the
simplicial contagion model case of Fig. 1, we would use
β(3, 2)= 2β1+ β2. In fact, the description offered by the infection
rate function β(n, i) yields a variety of models more general than
the original simplicial contagion—in which a function β(i) would
be sufficient to encode contributions from facets of any
dimension.

In all our case studies, we will use an infection rate function of
the form

βðn; iÞ ¼ λiν : ð1Þ

However, many results we derive hold true for a general
infection rate function β(n, i). The parameter ν controls the
nonlinearity of the contagion. A linear contagion is recovered by
setting ν= 1, which is equivalent to a standard SIS model on
networks, where each group is a clique20. We intentionally chose
the infection rate function independent of n to focus on the
impact of a nonlinear dependence on i; it would be straightfor-
ward to generalize the results by considering β(n, i)↦Λ(n)iν.

The infection rate function in Eq. (1) is the simplest nonlinear
generalization of standard epidemiological models, where
β(n, i)∝ i. Moreover, we can motivate the choice of exponents
ν ≠ 1 in the context of social contagions, by comparing our
approach to the original formulation of the simplicial contagion
model. A value of β2 > 0 in Fig. 1 represents social
reinforcement31, and to correctly map the infection rate for a

triangle, we need to use an exponent ν > 1 in our model. Similarly,
a value β2 < 0 represents social inhibition, and this case can be
obtained with an exponent ν < 1.

Another motivation for the infection rate function at Eq. (1) is
a recent study that shows this general form emerges in the
occurrence of heterogeneous temporal patterns37. More specifi-
cally, if you consider that the participation time of nodes—
representing individuals—to higher-order interactions is distrib-
uted according to a power law and that individuals become
infected according to a threshold mechanism based on the dose
received in the interaction, then the probability for a node to get
infected in a group is∝iν, where ν is related to the temporal
heterogeneity. In the continuous time limit, one recovers the
infection rate function defined at Eq. (1).

The infection mechanism is motivated in the context of
biological contagions37, where the infective dose received could
represent viral particles for instance, and the threshold would
correspond to the minimal infective dose to develop a disease.
While such types of complex contagions are rarely used in the
context of biological contagions, they could help explain certain
observed phenomena, such as super-exponential spread for
certain diseases51. Moreover, threshold models are very common
in social contagions33,52–54, thus Eq. (1) could be interpreted as
an effective mechanism of social spread accounting for hetero-
geneous temporal patterns.

Group-based AMEs. To describe hypergraph contagions, we make
use of group-based AMEs20,21,49,50. This means that we do not
rely on specific hypergraph realizations. Instead, we assume that
the structure is drawn from a random hypergraph ensemble
described by the distributions pn, for the size n of a group, and gm,
for the membership m of a node. Each of the m membership
stubs of a node is assigned uniformly at random to a group
available spot. Therefore, the membership m of a node and the
sizes of the groups to which it belongs are uncorrelated.

To track the evolution of a contagion process on this ensemble
of hypergraphs, we define two sets of quantities: sm(t), represent-
ing the fraction of nodes with membership m that are susceptible
at time t and fn,i(t), the fraction of groups of size n having i
infected members at time t. The last quantity can also be
interpreted as a conditional probability (of observing i infected
nodes in a group of size n) satisfying the normalization condition
∑ifn,i= 1.

We further define two mean-field quantities. First, let us take a
random susceptible node. The mean-field infection rate resulting
from a random group to which it belongs is defined as

rðtÞ ¼
∑n;iβðn; iÞðn$ iÞf n;ipn

∑n;iðn$ iÞf n;ipn
: ð2Þ

Indeed, the joint distribution for the size n and the number of
infected nodes i in this group is proportional to (n− i)fn,ipn, and
we just average β(n, i) over this distribution.

Second, let us randomly choose a susceptible node inside a
group. The mean-field infection rate caused by all the external
groups to which the susceptible node belongs (excluding the one
from which we picked the node) can be written as

ρðtÞ ¼ rðtÞ
∑mmðm$ 1Þsmgm

∑mmsmgm
: ð3Þ

To obtain ρ(t), we assume that infections coming from
different groups are independent processes. We multiply r(t)
with the mean excess membership of a susceptible node, i.e., if we
pick a susceptible node in a group, it is the expected number of
other groups to which it belongs. Since the membership
distribution of a susceptible node picked in a group is

Fig. 1 Mapping of the simplicial contagion model to a hypergraph
contagion. We use a bipartite representation, where nodes (white circles)
belong to groups (black circles). A facet of dimension n− 1 is mapped onto
a group of size n. In the simplicial contagion model, contributions from
higher-order interactions are taken into account by additional transmission
rates (e.g., β2 for the 2-simplex) when all but one node of the simplex are
infected31. With our hypergraph representation, infections within a group
are simply modeled by a general infection function β(n, i) that depends on
both the size n of the group and the number i of infected nodes in the group
(with i≤ n).
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Previous results on hypergraphs

Effects on (non)-linear Dynamics

SIS model

Total transition rate 
of v  to infected
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Linear Contagions: absorbing and endemic state

Structural correlations lead to 
reductions in the stationary 
prevalence compared to AMEs.
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Linear Contagions: absorbing and endemic state Super-linear Contagions: three solutions; one is unstable

Correlations especially important 
in the presence of nodes with 
large degrees.

Larger deviations in super-linear 
contagions and in the presence 
of unstable regions. 
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Results on Contact Networks
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Part of the deviation can be 
explained by the joint degree 
distribution.
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